CLAPP-PUPPE TYPE LUSTERNIK-SCHNIRELMANN (CO)CATEGORY IN A MODEL CATEGORY

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clapp-Puppe Type Lusternik-Schnirelmann (Co)Category in a Model Category

We introduce Clapp-Puppe type generalized LusternikSchnirelmann (co)category in a Quillen model category. We establish some of their basic properties and give various characterizations of them. As the first application of these characterizations, we show that our generalized (co)category is invariant under Quillen modelization equivalences. In particular, generalized (co)category of spaces and ...

متن کامل

Lusternik-schnirelmann Cocategory

We introduce a new deenition of the (Lusternik-Schnirelmann) co-category of a CW complex X. This is accomplished by producing a dual of the fat wedge called the thin product. One then looks at fac-torizations of the fold map through the thin product analogously to the Whitehead deenition of category. We investigate the relationship between this deenition and the rational cocategory introduced b...

متن کامل

Lusternik-Schnirelmann category of Orbifolds

The idea is to generalize to the case of orbifolds the classical Lusternik-Schnirelmann theory. This paper defines a notion of LS-category for orbifolds. We show that some of the classical estimates for the regular category have their analogue in the case of orbifolds. We examine the topic in some detail using a mixture of approaches from equivariant theory and foliations. MSC: 55M30; 57R30

متن کامل

Estimating the discrete Lusternik–Schnirelmann category

Let K be a simplicial complex and suppose that K collapses onto L. Define n to be 1 minus the minimum number of collapsible sets it takes to cover L. Then the discrete Lusternik–Schnirelmann category of K is the smallest n taken over all such L. In this paper, we give an algorithm which yields an upper bound for the discrete category. We show our algorithm is correct and give several bounds for...

متن کامل

Transverse Lusternik{Schnirelmann category of foliated manifolds

The purpose of this paper is to develop a transverse notion of Lusternik{Schnirelmann category in the eld of foliations. Our transverse category, denoted cat\j (M;F), is an invariant of the foliated homotopy type which is nite on compact manifolds. It coincides with the classical notion when the foliation is by points. We prove that for any foliated manifold catM catL cat\j (M;F), where L is a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korean Mathematical Society

سال: 2002

ISSN: 0304-9914

DOI: 10.4134/jkms.2002.39.2.163